
1"11CT.ASSTFIED

AD-A205 924 Form Approved
Rt ETTO PAGE 0MB NO. C704-0 f88

-1a. REPORT SECURITY CLASSIFICA EL CTb. RESTRICTIVE MARKINGS ..

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUT T TY MAR 1 0 198 3. DISTRIBUTION/AVAILABILITY OF REPORT

DC CO NUApproved for Public Release;2b, DIECLASSIFICATION / DOWNGR HEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(ki S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

WEIDLINGER ASSOCIATES AFOSR/NA

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

333 Seventh Avenue Bldg. 410
New York, NY 10001 Bolling AFB, DC 20332-6448

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
AFOSR NA F49620-85-C-0045DEF

9c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Bldg. 410 PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.Bolling AFB, DC 20332-6448 6.12 I 32C
6.1102F 12302 1 Cl r

11. TITLE (Include Security Classification) (U) UNCERTAINTIES IN SOIL CONSTITUTIVE BEHAVIOR

12. PERSONAL AUTHOR(S) H. BENAROYA

.3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
FINAL FROM 3/1/85; TO 9/23Q/88 89/2/1 33

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on revere if necesary and identify by block number)
FIELD GROUP SUB-GROUP Phenomenological, Markov transition probability.

I. Stochastic matrices; Convergence properties.

19. ABSTRACT (Continue on reverse if necessary ad identify by block number)

A Markov chain phenomenological framework is used to model soil constitutive
behavior accounting for uncertainties. The key in a Markov chain model is
its transition probability (stochastic) matrix. Two lines of study have been
pursued: 4explore the properties of stochastic matrices with the purpose of
explaining different classes of behavioF.--acording to the mathematical
properties of thesp transition matrices;-fidentify a relatively simple
technique to estimate the transition probabilities from available experimental
data. These were parallel efforts. The first is greatly enhanced by the
success of the second.

20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
f3UNCLASSIFIE/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a NAM;E Or RF PONS - F INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
MaRor Steven C. Boyce (202) 767-6963 AFOSR/NA

DD For'i 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



UNCERTAINTIES IN SOIL CONSTITUTIVE BEHAVIOR

Final Report: 3/1/85 - 9/30/88

H Benaroya
Applied Science Division

Weidlinger Associates
333 Seventh Avenue

New York, New York 10001

ACKNOWLEDGMENTS

Prepared under Air Force Office of Scientific Research Contract No. F49620-85-C-0045DEF

Lawrence Hokanson, Spencer T Wu, and Steven C Boyce, of the Air Force Office of Scientific
Research, are sincerely thanked for the financial support which has made this work possible.

19 October 1988
revised submission: 1 February 1989

2



SUMMARY of FINAL REPORT

Our work begins with a brief review of important deterministic and probabilistic phenomen-)logical
soil modeling [1]. Behavioral ranges and associated problems are defined with respect to random
excitation, material modeling, free-field behavior, and structure-media interaction. Next, a number
of ideas are explored as possible frameworks for the phenomenological modeling of soil constitutive
behavior, accounting for uncertainties [2], and a significant source of experimental data especially
useful in our model development is identified [7]. Considering various possible approaches, it is
concluded that a Markov framework provides the best approach since:

1. The fundamental axiom upon which all Markov theory rests is the following: the probability
that a system occupies some state at Aime t1 later than time t depends on its disposition at
time t and not on any time earlier than t. This is analogous to the approach of (deterministic)
classical mechanics where the evolution of a system is established given its present state.
Thus, the Markov state transition matrix appears to be an ideal probabilistic counterpart to
the transfer matrix ccncep used extensively in deterministic modeling, where this transition
matrix and corresponding probability distribution of states couples the system evolutionary
dynamics with system properties.

2. The need to know only the most recent state of the system is attractive also from the compu-
tational point of view. It would be possible to update the state of the system while retaining
data from only one additional state. The complete history is not needed since it is effectively
incorporated in this most recent information. This property also turns out to be useful in
linking the method to experimental data.

The central thread through our efforts is the study of the Markov transition probability matrix.
The main purpose is to explain different classes of dynamic behavior and constitutive properties in
terms of the mathematical properties of transition matrices. These transition matrices are called
stochastic matrices, and they have many properties; a key property from which all others follow is
that row sums equal 1, that is, the probability of being in any of all possible states must equal 1 if
the set of all possible states is all inclusive. The bulk of this work is reported in two reports [15,16].

As an aside to the focus of our efforts, ideas in fractal geometries as appiied to the problem
at hand drew our attention, and we put a few ideas of our own down on paper for future reference
[17]. Given the opportunity and time, we may go back to these.

A parallel component of our efforts centered about linking the Markov transition probability
matrix to experimental data. This is a key to using Markov models, and, ironically, a topic that
does not appear to draw much attention in the applied literature. How does the analyst/modeler
take experimental data, extract in a rational way its essence, and build a transition probability
matrix that reproduces that data in a probabilistic sense? This was viewed as extremely important
given the above studies regarding the theoretical properties of stochastic matrices and given the
type of data one can expect [7] to utilize. Our ideas are embodied in two papers [3,4] which
essentially tell the same story, but the first for those concerned with soils, and the second for a
general audience that may be interested ii, the method for other applications. A practical technique
is developed for the derivation of transition probability matrices, given data, and the derived matrix
is shown to computationally reproduce the data. We are likely to use these ideas to transform an r

in-house deterministic analysis code into one that can account for uncertain soil media. A further
refinement of this experimental-based derivation of Markov transition matrices is suggested for
more complicated behavior. In addition, use of such matrices as predictive tools would add insight r
regarding their robustness.
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TECHNICAL ABSTRACT

The focus of this research effort is the construction of a mathematical framework to help us under-
stand the role of uncertainties in the constitutive/dynamic behavior of soils. The approach choscn is
phenomenological and probabilistic. The phenomenological/probabilistic model is a logical choice
given the nature of the soil medium and the respective necessity for significant data. Soil behavior
falls into the category of irreversible systems and is modeled as such. While the modeling of soil
behavior is our goal, we present here some ideas on the necessary mathematical framework and
attendant notes on application by which this is to be accomplished. It is recognized that there are
many issues to be addressed and resolved before the goal is achieved, and that the first of these, a
mathematical framework, will have only been touched by this work.

Markov theory is used to provide a probabilistic framework for the modeling of constitutive
uncertainties in dynamic soil behavior. This theory is attractive because it is the probabilistic
analog to the classical physics approach to dynamics, it is easily recast into a computational form
and can be rationally linked to data, and because it coincides with one concept of a stochastic
constitutive model. Only the homogeneous or stationary Markov model is considered here. It is
expected that this assumption will not severely limit the applicability of the theory.

In addition to the Markov probabilistic framework, a statistical framework is needed to connect
the theoretical model and the data. This connection falls within estimation theory. While possible
approaches were maximum likelihood estimates, Bayesian inference techniques, and Maximum En-
tropy ideas, a graphical, data-based technique was adopted as providing the most information with
a minimum of assumptions. This connection with data is based on the definition of the state space
within which the transition matrix of the Markov model operates. The mutually exclusive and
complete definition of a state space is, in general, a very difficult task, given the complexity of the
physical problem being addressed, but the approach chosen here appears reasonable for processes
where data is obtainable. Thus, our work may be roughly divided into a theoretical component
[2,15,16] and an experiment-based component [3,4]. That is, (i) given a stochastic matrix, draw
conclusions regarding the system it represents, and (ii) given specific system information in the
form of experimental data, translate the data into the computational transition probability matrix.

Some preliminary technical aspects are summarized next: Our work deals with stochastic
matrices of order n, where these are nxn matrices having each element greater than or equal to
zero and such that row sums equal 1; in symbols:

n

A =,[aij]? , aij 0, au, = 1.
j=1

Such matrices arise naturally in the study of Markov chains [9,10].
Our theoretical approach is mainly geometric rather than algebraic. Particularly, we conceive

of a stochastic matrix of order n in two different ways. Such a matrix A can be regarded as
an operator ui R", i.e., if v is a row vector in R n , then v --+ vA defines a linear operator map
R~n _. R n . However, by virtue of the fact that A is stocha.qtic. even more can be Paid. For, if
we allow A be the simplex in R n with vertices ei(i = 1,...,n), where ej denotes a vector whose
it h component is 1 and all others are zero, then A maps A into A. A second way of regarding
the stochastic matrix A is to suppose it to be a point in Rn2; we identify the n2 elements of A
with the n2 components of a point in R 2 . Then all the stochastic matrices form a closed bounded
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polytope in R' , which we denote here by E, a polytope being in dimension n what polygons and
polyhedrons are in dimensions 2 and 3, respectively. The properties of A, which lead naturally to
the classification of all stochastic matrices, are intimately related to the geometrical description of

The foremost property of a stochastic matrix is its convergence characteristics.
Convergence can be defined with respect to the Euclidian norm in R" or R 2 . In the first case,
let vo be an arbitrary vector in A C Rn. Then we can study the existence of v0A ' .
Alternatively, regarding A as a point of R n 2 , we can examine the existence of lim,--o A'. It has
been demonstrated that both viewpoints are closely related. An important question addressed is
the relationship between the convergence properties and the eigenvalues of a stochastic matrix A.
The main instrument for this is the Frobenius-Perron Theorem [18), for which a proof is given using
geometrical methods. The main result is that, given an arbitrary vector vo in A, lim,. v0Am
exists if and only if A has, for eigenvalues, no roots of unity other than 1. However, to determine
more precisely the convergence properties of a stochastic matrix, we examine the existence of, and
characterize the properties of, m A'. If A is an eigenvalue of A, then \' will be likewise
of A m; thus, we find that lim,--..o A', if it exists, will have for eigenvalues only 0 and 1. It will
be therefore possible to classify limit stochastic matrices (matrices of the form , A' ) via
the multiplicity of the eigenvalue 0 or 1. It may seem that this problem is complicated by the
fact that a stochastic matrix need not be diagonalizable. (We may recall that a diagonalizable
matrix A is defined by the existence of a non-singular matrix V and a diagonal matrix A such that
VAV- 1 = A.) But, we show that the eigenvalue 1 always occurs in a diagonalizable manner, while
0 occurs likewise in limit stochastic matrices.

Also of interest is the class of nearly-completely decomposable stochastic matrices. Briefly, a
matrix is said to be completely decomposable if, by renumbering if necessary, it can be written in
the form

A,

A2  A~
AA

where the Ai are matrices which run down the diagonal of A, all other elements being 0. Of course,
if A is stochastic, each Ai will be likewise; hence, a study of A simply reduces to the study of
smaller matrices, A,, (i = 1,... , m). Courtois [8] has studied stochastic matrices that have their
elements close to completely decomposable matrices. Apparently, these "nearly-completely decom-
posable" matrices have many modeling applications using Markov processes. In connection with
such matrices, we prove the following result: If B is an arbitrary limit matrix, B = limm.,oo A',
where A is a stochastic matrix, then there exists a nearly-completely decomposable stochastic ma-
trix B1 , such that B = limm,.-.oo B', and in fact B1 may be chosen arbitrarily close to a completely
decomposable matrix.

Complementing the above work on the properties of stochastic matrices, an experimental-based
procedure is developed to derive Markov transition probability matrices. For a given experiment
data base, a state space is defined and used to derive transition probabilities by applying the
frequency interpretation or probability. This approach can, in principle, be used regardless of
the complexity of the behavior, to whatever accuracy necessary using a more refined state space
definition. The resulting transition probability matrix is representative of the behavior of the
medium, that is, the data from which it was derived. It is expected that the matrix is reasonably
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robust and representative for "similar" types of soils.

PROBLEM STATEMENT

The focus of this research effort is the construction of a mathematical framework to help us under-
stand the role of uncertainties in the constitutive/dynamic behavior of soils. (For some background
on the constitutive modeling of soils, see (1].)

A constitutive model or equation describes the macroscopic behavior resulting from the internal
constitution of a material; basically, the model characterizes the individual material and its reaction
to applied loads. A stochastic constitutive equation therefore characterizes the material where
uncertainties exist about its material and geometric properties, and its reaction to applied loads.
As a simple case, consider an ideal elastic solid undergoing axial strain resulting in axial stress
according to the constitutive relation a = Ec where E is Young's modulus of elasticity. If E is a
random variable (or a field, that is, a function of position), then one or both a and E can at best
be described using probabilistic descriptors. If a = EE is incorporated into an equation of motion,
then a stochastic constitutive dynamic model is created by way of the random properties of E.

One may view a generalized stochastic constitutive equation as one which probabilistically
defines how a material undergoes dynamic behavior. A constitutive model must accurately describe
the experimental data used to specify it, as well as predict behavior under conditions not covered
by the original data. In the development of a constitutive model, it must be recognized that
experimental data is always difficult and sometimes impossible to obtain. Therefore, the model
should contain as few parameters requiring evaluation as possible. Furthermore, the model should
be a function of the major system variables so that the underlying physics of the media/process is
adequately represented, and thus hopefully understood.

Of course, no single constitutive model can represent any material in all situations. Even
water, which is probably the most studied and best understood real material known to man, is
never described by a single constitutive law to cover all situations. Thus, whenever a constitutive
model is developed, only those features of material behavior relevant to the physics at hand should
be included. Any completely general formulation, while philosophically pleasing, will only be of a
formal nature.

Our effort has centered about the development of phenomenological, as opposed to microstruc-
tural, stochastic constitutive models for soils. Phenomenological models require data not only to
determine parameter values, but also to validate the model itself. Such model building uses the
following procedure [5]:

1. a generic form of the model is chosen,
2. one examines families that possess the general features known about the phenomena, and picks

the class of models that encompass the phenomena in a reasonably complete manner,
3. evaluate the parameters of the model,
4. since the phenomenological model is probabilistic, results will also be probabilistic: probabili-

ties of specific events, averages, sample function behavior,
5. validate the model using a variety of data.

The phenomenological model provides an ideal framework where concern exists about the
correlation of real-life data with the predictive accuracy of the theoretical model. It also permits
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the analyst to retain the theoretical model while adopting the new information that becomes
available with more recent data.

AN APPROACH to a COHERENT FORMULATION

Markov theory has been chosen to provide the framework for modeling constitutive uncertainties
in soil behavior. There are several basic reasons for the adoption of this powerful theory in these
studies:

1. The fundamental axiom upon which all Markov theory rests is the following: the probability
that a system occupies some state at time tj later than time t depends on its disposition at
time t and not on any time earlier than t. This is analogous to the approach of classical
(deterministic) physics where the evolution of a system is established given its present state.
Governing differential equations are such an example.

2. The need to know only the most recent state of the system is attractive also from the compu-
tational point of view. It would be possible to update the state of the system while retaining
data from only the previous state. The complete history is not needed since it is effectively
incorporated in this most recent information. This property is also valuable in translating
experimental data into model parameters, as is discussed below.

3. Finally, the Markov state transition matrix appears to be an ideal mathematical counterpart
to a concept of a stochastic constitutive model, where this transition matrix and correspond-
ing probability states can be interpreted as a stochastic constitutive model coupled with the
evolutionary system dynamics.
The Markov framework is a conceptual structure that we use to keep an, albeit sophisticated,

accounting of how uncertainties in the system or inputs propagate in space and time. As a the-
oretical construct it is well understood. When it is used to gain physical understanding about a
specific system, such as a soil, it is necessary that certain parameters particular to that system
be incorporated into its mathematical structure. These parameters will be representative of the
stochastic material and geometric characteristics of the system being studied. In summary, the
proposed model is of two parts:

1. a probabilistic theoretical framework, and
2. a data-based parameter estimation technique.

Item 1 reflects our understanding of how a soil medium responds to its environment; we adopt
Markov theory. Item 2 reflects the need to connect the theory to specific problems. This means
the utilization of data.

It is noted that the behavior of a soil medium, under realistic conditions, is irreversible. This
means that it is not possible to regain earlier states except in very limited cases. This understanding
has an effect on the mathematical modeling, and the interpretations of predictions.

THE GEOMETRIC THEORY of STOCHASTIC MATRICES

Stochastic Matrices as Operators on a Simplex

Here, the basic properties of stochastic matrices conceived as linear operators acting on R' are
defined and proved. Actually, it is seen that the stochastic matrices do even better: they operate
on a convex compact simplex of dimension n - 1, which is contained in R". In fact, this simplex is
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the set of stochastic vectors, i.e., the set of probability distributions of a system having n possible
states.

Two methods are involved in this study. The first is to identify the simplest types of stochastic
matrices, determine their properties, and then deduce the properties of the general stochastic matri-
ces as built up from these simplest units. (The simplest stochastic matrices are the indecomposable
ones.) The second method is to relate the properties of stochastic matrices to their eigenvalues.

The definition of decomposability can be motivated as follows. The numbering of the com-
ponents of a vector is completely arbitrary; hence, the significant properties of a matrix which
represents an operator on vectors should be defined so as to be independent of such numbering.
Specifically, let v be a row vector in R' and suppose v' is obtained from v by some permutation of
the components. We can write this as v = v'T, where T is an nxn matrix having only 0 and 1 as its
elements; in fact, T is doubly stochastic and has an inverse, which is also a stochastic matrix. If A
is a general stochastic matrix and w = vA, we can write this equation in terms of permuted vectors
w' ,  W' = n'TAT - . Thus, we see that any significant property of A should also be shared by
TAT - ', where T runs through all possible permprtation matrices; rnte that these matrices TAT
will also be stochastic.

The definition of indecomposability follows from the above criterion: a stochastic matrix A is
decomposable if there exists some permutation matrix T such that TAT has the form

[All1 A12 1
0 A22 '

where All, A 22 are nj and n 2 order square matrices, such that nj > 0, n2 > 0. A 22 must necessarily
be stochastic, but All is so if and only if A1 2  0. By means of such permutation matrices, it is
possible to assume TAT-' to be of the form

[A,

0 A,.

where Ak+l,..., A, are stochastic and indecomposable. (We begin with the subscript k + 1 since
there may be k decomposable and stochastic matrices.) Indecomposable, stochastic matrices are
the easiest to study since they turn out to have a simple eigenvalue equal to 1. If no other
eigenvalue has absolute value 1, then the matrix has very simple asymptotic properties which are
investigated. More generally, the properties of an arbitrary stochastic matrix can be inferred from
its indecomposable components.

The above definition of indecomposability was an algebraic one. There is a geometric equiva-
lent. It was noted before that a stochastic matrix mapped a simplex of R' into itself; we can define
a stochastic matrix by this property. Further, we show that the property of indecomposability
translates into the property that no proper part of the boundary of this simplex is mapped into
itself. This alternative definition will often turn out to be more useful.

Four theorems on the eigenvalue properties of stochastic matrices have been stated and proved
[15].

Representation of Stochastic Matrices as Convex Polytopes

In the last section, stochastic matrices were viewed as operators acting on vectors, more particu-
larly acting on stochastic vectors. However, it is desirable, when considering the classification of
stochastic matrices, to view them also as vectors with n2 components. In fact, it is necessary to
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view them in this way to give meaning to statements such as: two stochastic matrices are close to
one another. If these matrices are viewed as points in R"2, the Euclidian distance or any topo-
logical equivalent enables us to determine the distance between stochastic matrices and to define
continuous functions on the set of stochastic matrices. This then is the viewpoint taken in the
following text.

It is then seen that the stochastic matrices form a simple figure in R ' 2, namely, a convex
bounded polytope. Also, those stochastic matrices which are limits of the form lim,_..0 A can
be determined insofar as their geometrical status within this polytope. As a final step, the relation
of nearly decomposable matrices to general stochastic matrices is examined. Eight theorems on
stochastic matrices are stated and proved.

Consider, for example, the propagation of a single wave front traveling in one dimension, the
real line, which is discretized into intervals of equal length. Each interval is labeled by an integer
such that consecutive intervals bear consecutive labels. Let vi denote the probability that the wave
front lies in the ith interval and is traveling to the right; v the probability it lies in the ith interval
and is traveling to the left. Let v1 be the row vector .vi_,vi,vj+1,...) and v, similarly isgiven by (...,v!_, v I Igiven by vi~ ,..). Let v = (vf, vr). Note that i~ +1 2iv = 1, where all 1)i,v i are

non-negative. Given v at time to, we wish to calculate the transition matrix R such that vR will
be the probability distribution of the wave front at the succeeding time interval t1 . Initially, we
assume the velocity of propagation to right or left to be such that the wave front can travel the
length of one interval in time t, - to.

Further, we define that at each boundary between intervals the wave front has probability p of
being reflected and r of being transmitted; so that p, r are non-negative and add to 1. Suppose ei
denotes the row vector whose components are all zero except the ith which equals 1. If v = (ei, 0) at
t = to, then v = (rei+1,pe,) at t = ti. In a like manner, it is easy to see that (0,e,) is transformed
to (pe,, rei- 1). Thus, we see that R is given by:

[T p1 1
R= [pI rT- '

where I,T are matrices indexed by ZxZ : Ijk = 6 j, the Kronecker b, Tj,k = 6j+Lk, T-1 = bj-l,k.
Note that T • T - 1 = T-1 T = 1, so that the notation follows standard convention.

If we now introduce the probabilities {pk)}, E= Pk = 1, where pk is the probability that the
velocity of propagation is k intervals per unit time, we obtain the transition matrix

00

Q = p l .

k=l

A number of practical comments are due here:

1. the probability distribution of propagation velocity will be a function of the uncertainties
associated with material properties, which, in turn, will depend on the type and magnitude of
loading; as the material undergoes irreversible deformations, the distribution generally changes,

2. reflection and transmission coefficients p and r are measures of material homogeneity and
geologic structure, and

3. we expect that for larger k (extreme velocities with propagation over many elements), Pk will
become exceedingly small and practically negligible when compared to the early terms in the
series; thus, the infinite series can be effectively truncated, and in some applications, after just
a relatively few terms.

10



We resume the above development by calculating the powers of R as follows: Let

U- T 1 , 1 1] [1 0

then, clearly W' - I and
WU = U-1w,

where

U-1 =[T-' 0]0T

Thus,

R = rU + pW,

R2 = (TU + pW)2

= T*2 U 2 + p 2 1+ rp(U + U-1)W,
R3 = r3 U3 + rp2(2U + U - 1) + [rp(U2 + U -2 + + p3]W,

etc.
It is possible to modify the above problem to obtain a finite order transition matrix. Consider

now that the boundaries between the -1 and 0 intervals and the n and n + 1 intervals are imper-
miable; these boundaries permit reflection only. The transition matrix R, for the intervals 0 to n
is now a stochastic matrix of order 2n of the form:

0 7 p
0 r 0 p 0

o r 0
0 1

R= 0 0

p 0 T 0 0

0 0

p Tr Ojp!
Note that R,1 , and therefore also Qn = = pR, where all Pk are non-negative, and

E"0=1 Pk = 1, are doubly stochastic. Thus, barring exceptional cases,

1
lim V0Qk = 1 -(1, 1,...., 1),

where v0 is an arbitrary 2n-stochastic vector, i.e., an arbitrary probability distribution of wave
fronts. This means that after a sufficient interval of time, the wave fronts are evenly (uniformly)
distributed in the medium, regardless of the initial distribution.

Two exceptional cases are as follows:

1. r= 0, p= 1,
2. r= 1, p =0.

11



These cases can result in R, being a permutation matrix. In case 1, R,, has n linearly
independent eigenvectors for eigenvalue 1, namely (ei,ei) for i = 1,2,..., n. This means that the
wave fronts in the ith interval at t = 0 is trapped there for all future time. In case 2, RpI, is the
identity matrix; after 2n time steps the system resumes its initial distribution and is recurreht.

In the example, it is noted that the finite order transition matrices were doubly stochastic.
A consequence of this was that regardless of the initial ',robability distribution, the limiting dis-
tribution was generally homogeneous. Of course, this result should come as no surprise since the
transition matrix in each case was derived on the assumption of geometric homogeneity. Thus, we
should understand double stochasticity of the transition matrix to be a manifestation
of geometrical homogeneity of the medium being modeled. If this assumption is dropped,
we would obtain a transition matrix which is not doubly stochastic.

Also, in the expression for , replace the rTs and p's by ri and Pi, where i varies, but such
that pi + -i = 1; and so obtain a matrix which is not doubly stochastic. In fact, consider the
extreme case where all motion to the left is restrained by perfectly reflecting barriers; thus, R, has
the form 01 0

0 1 0 0 0

0 1 0
01

R,, 1 0

0 0

0
1 0

The unique stochastic eigenvector of R,, for eigenvalue 1 is (en,en); from this we conclude
the expected result that as t -- oo, all the wave fronts congregate in the farthest right subinterval.
Note further that since R,, maps (e,,0) to (O,e,,) and vice versa, R, is decomposable and has -1
for an eigenvalue so that R' does not converge as m - oo.

STOCHASTIC MATRICES and DYNAMIC PROBLEMS

n

Consider substochastic matrices of order n: P = (P,3)!'j=1, where all pij >_ 0 and si = Zj < 1.
j=1

The last condition is that the row sums are less than or equal to 1. If all row sums equal 1, the
matrix is said to be stochastic; if all row sums are less than 1, the matrix is said to be properly
substochastic.

The row sums have a significant effe_. on the eigenvalues of P, as can be seen from the following.
Let A be the dominant eigenvalue of P, the eigenvalue of maximnm modulus. It is known that
A < 1; A = 1 if P is stochastic. Suppose x = (xl,...,x,1 ) is the left eigenvector belonging to \,
normalized so that i xi = 1. Note that such a normalization is possible since, for the dominant
eigenvalue, all xi > 0. Then xP = Ax, and taking row sums of both sides, x .isi = A. Therefore,

ni

p = 1- A = EZx(1 -s).

i=1

12



Only the terms for which si < 1 appear in the sum. If P is indecomposable, all x, > 0 and we see
again the fact that if P is indecomposable and properly substochastic, then the dominant eigeivalue

< <1.
Such matrices can arise from finite difference approximations of Laplace's equation. (As such,

applicability to a wide range of physical problems is seen.) Consider a square grid in two dimensions
where the nodal points are denoted by (i,j), where i,j are positive integers. If u is a function on
this grid Au at the point (i,j) is approximated by

1
4j [ui+l,j + ui-,j + ui,j+l + uij-1 - 4Ui,j],

where h denotes the grid size. Setting h = 1, one sees that -A, = I - A, where I is the identity
matrix and A is a stochastic matrix whose non-zero entries are usually 1/4; the order n of both
matrices is the number of grid points. Suppose A is modified so that each boundary grid point is
an absorbing point. Then A takes the following form:

A0p ].
Here I, is the identity matrix of order d,d being the number of boundary grid points, and P is
a substochastic matrix of order n - d. In fact, P must be properly substochastic; otherwise, the
boundary would not be connected to our region. The number of rows d, of P which have sum < 1
can now be interpreted as the number of grid points directly adjacent to the boundary. We should
expect d, < d with near equality. Ideally, equality should be an indication of smoothness of the
boundary, for example, the absence of corners.

It will be noticed that other algebraic properties of P correspond to geometric properties of the
region which is modeled by the grid. For example, failure of the region to be connected corresponds
to a matrix P which is completely decomposable, that is, by renumbering indices we obtain a matrix
of the form,

P rP11  01
0 P 22 J"

Indecomposable matrices, those matrices which can be put in the form

p [Pt P 1 2 ]
1 0 P 22 J'

where P 12 # 0, simply do not occur in this context. Additional properties of reversible matrices,
and matrix reductions have been derived [16).

We can apply, for exanmple, the foregoing Lo the solution of the following dynamical problem:
let us consider one of the -',rplest examples in mechanics, the harmonic oscillator. Let x(t) be a
function for t > 0 which is a solution of the differential equation

x + W2x = 0,

where z(0) = X0, i(0) = 0, so that z.(t)l = xo cosw t, +(t) = -wxo sin wt. If w is held constant,
(x, -. i) describes an ellipse in phase space.

Since the orbit is closed, we can approximate the system by a finite transition probability
matrix as follows. Divide the curve into n divisions and let aij denote the probability the particle
lands in the jt interval in a unit time supposing that it was in the ith interval just before the
transition. If the intervals are numbered consecutively 1,2,3,..,n, so that after n we regain 1,
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then the matrix A = (aj)!,.=. should have the property that the matrix be the same regardless
of which interval is numbered 1. Thns, we are led to conclude that ai+,,j = ai.j-1. Here the
convention is adopted that the subscripts are taken mod n; e.g., a21 = al Thus, if the first row
is given by ali = pi-1, for i = 1,... ,n, all other rows are given by aij = pj-i (again with the mod
n convention for subscripts). If T is the nth order matrix defined by

0 1 0 0

00 1 0 ..
0 0 0 1

T=

0 0 ... 1
1 0 0 U

n--

then A is given by A = "-0 piT'. The eigenvalues of T are seen to be A = exp(2rij/n), where
j = 0,1,... ,n - 1 and i = V-C. Indeed, if z = (xo,x1,... ,zn- 1 )T is a right eigenvector for T,
then Xk = exp(2rijk/n). These must still be the eigenvectors for A, but now the eigenvalues of A
are

n-1

Aj E pk exp (27rijk/n),
k=O

which displays each Aj as a mean of nth roots of unity. From this it is clear that two cases arise:

1. All Pk except one are equal to 0. In this case A is periodic, i.e., A' = I for some m which is
a divisor of n. Thus, if v0 is an initial probability distribution, it will recur after m time steps:
v0 = v 0A'.

2. At least twopk > 0. In this case limm-.o.A ' exists, and in fact we must have limm-.o. vOAm =
n-l(1, 1,..., I) for any arbitrary initial probability distribution v0 . In other words, as time
goes to infinity we must approach a state where there is equal probability of the particle being
in any of the n subintervals.

Note that case 1 is in fact the deterministic case. In the above formulation the only relevant
numerica; data is the probability distribution (PO,... ,pn-1) which can be directly calculated from
the probability distribution for the natural frequency (or spring constant) of the system. This can
be said to govern the speed at which the particle goes around the orbit: Tk is the matrix which
corresponds to a particle moving through k subintervals in a unit time. Nothing is said regarding
the radius of the orbit (actually one should more strictly speak of the semi-major axis since the
orbit is an ellipse). The radius of the orbit is a function of the energy, which is constant if no
external force is applied. Suppose now there is such a force applied. Then we may suppose its
effect is to alter the radius of the orbit. Since the loading probability may be assumed independent
of the structural properties of the system, we may solve this problem independently of the former
problem; i.e., the radial distribution is independent of the tangential distribution.

An example of a stochastic matrix of order n + 2 for such a transition of orbit in unit time is
given by

.1 0 0

2 2

2 22

0 0 1.
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The meaning of Q is as follows: there exist n adjacent orbits and two absorption states such
that a particle has equal probability of transferring to one of its two adjacent orbits or to an
absorption level, from which there is no return. Then A = 1 is an eigenvalue of Q with multiplicity
2; corresponding left eigenvectors can be taken as (1,0,...,0) and (0,..., 0,1). The remaining
eigenvalues of Q are the eigenvalues for the portion of Q which is marked off in the dashed box.
Applying to P, the same method employed earlier, we see that the principal right eigenvector for
P must be of the form, a = (a,,... ,a,.)', where ak = sin (kr/(n + 1)), where the corresponding
eigenvalue is given by A = cos (7r/(n + 1)). In fact, the totality of eigenvalues and right eigenvectors
for P is given by replacing 7r/(n + 1) by jfr/(n + 1), for j = 1,2... , n. Thus if A, is the dominant
eigenvalue, -A 1 is also an eigenvalue, and actually, all eigenvalues occur with their negative values.
This could also have been seen from the fact that the trace of P equals 0. Because of this, it
is not possible to use our previous theory to associate a probabilistic meaning to the eigenvector
associated to A1.

But this shortcoming can be remedied very easily by considering p 2 instead of P. p 2 has
positive eigenvalues but, except for the possible A = 0, all occur with multiplicity 2. However, P is
completely decomposable and it suffices to work with only one of the "parts" of P. The physical
interpretation illuminates the foregoing algebraic assertion: in two time steps, the system must lie
in an even numbered state, if it started out in an even numbered state, with the same if we replace
"even" by "odd". Thus, if we double our time step and consider only the even numbered states we
obtain a transition matrix, which we again call P:

0 ...

p4IIlI~ 01 0 1 1P 04 2 4 ""

This new P should have an order approximately half that of the previous P, but again we may
suppose the order to be n. The dominant eigenvalue is now given by

A + cos(4L) 2_

=co2 2(n + 1)'

The corresponding left (or right) eigenvector is given by the components ak = sin(kw/[n + 1]),k =

1,2,...,n.
If the absorption states are removed and n permitted to go to infinity, it will then be found

that the limiting distribution approaches that of a Gaussian or normal distribution.

MARKOV CHAIN TRANSITION MATRICES as
CONSTITUTIVE MODELS of SOIL DYNAMIC BEHAVIOR

To apply a Markov chain model, we recall that the transition probabilities {Xn} with state space
{0, 1,2, ...}, best exhibited in the form of a matrix

.po,0(m,-) p0,j(m,) .., p0,k (m,-n) ..
p,o(m,n) pij(m,n) ... p,kn(m, n) ...

P(m,n) ... ...
}pjio(m,n) pjj(m,n) ... pj,1,(m, n) ...

.•. pJ,K(m,n)l
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must be derivable. The elements of a transition probability matrix P(m, n) satisfy the conditions

pj,k(m,n) > 0 for all j,k

k p(m,n) = 1 for all j.
k

One may derive the recursive relation:

p(n) = p(O)P(0, n),

where

p(n) = pn)pn)..p(n..
pi(n) = P[Xn = j].

It follows that the probability law of a Markov chain {Xn} is completely determined once one
knows the transition probability matrices, and the unconditional probability vector p(O) at time 0.
In the case of a homogeneous (time-invariant) Markov chain {Xn}, let

. P(n) = {p3,k(n)}, P = {P.~k}

denote respectively the n-step and the one-step transition probability matrices. From the above
equations, it is observed that

P(n) = p",

p(n) = p(0)P".

Consequently, the probability law of a homogeneous Markov chain is completely determined once
the one-step transition probability matrix P = fpi,k} is known, and the unconditional probability
vector p(O) = {pj(O)} at time 0.

Markov theory is a conceptual framework for modeling the propagation in time and space of
system and environmental uncertainties. As a theoretical construct it is extensive [6,14,23]. When
it is used to gain physical understanding about a specific dynamical system, it is necessary that
certain parameters particular to that system be incorporated into its mathematical structure. These
parameters will represent the stochastic material, geometric, and environmental characteristics of
the system being studied. The transition probability matrix is the vehicle by which such information
is incorporated into the Markov model.

Others have taken the Markov chain approach to physical modeling [5,19, for example]. How-
ever, the text below, tc the best knowledge of this author, is not available elsewhere. An Appendix
summarizes some of the mportant definitions from Markov theory.

Definition of States

Implicit in the above discussion is the fact that the Markov model operates on a system which
has been partitioned into states. Inherent in the definition of the state space for a problem is an
understanding of, even if only in general terms, what are the likely system response patterns to
the environments to which it will be exposed. The state space is mutually exclusive and complete;
all possible states can represented in a unique fashion. It is desirable to devise a procedure for
state-space specification that is unbiased, meaning that it does not impose the modeler's a priori
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expectations on the types of behavior the model can predict. Ideally, one would aim for a model
mechanism which would generate and augment the state space using initial and current state
information.

The process of state space definition will begin with the determination of behavior regimes
that are of particular importance or interest. Just as with a finite element model, where more
elements are specified in regions of complexity or possible critical behavior, the definition of a state
space exhibits the analyst's expectations. Thus, if one is defining the state space for a material
that is to undergo significant strain deformation beyond the yield strain, e, one might define a
relatively small number of states in the elastic region and a larger number in the yielded region.
Uncertainty regarding the numerical value of ey will require the definition of several yield states
with corresponding transition probabilities according to a probability distribution law derived from
data. Similarly, uncertainty about the elastic loading modulus may motivate the definition of
several loading moduli.

Theoretically, the state definition procedure is not a trivial task since the analyst must antici-
pate behavior states that may not have been previously encountered, and do this without hopelessly
exceeding analytical and/or computational abilities. It is also not an isolated task, but one which
must be carried out with knowledge about the ease of estimating the transition probabilities. It
is only useful to define states which can be observed experimentally, and for which transition
probabilities can be estimated.

In particular to the procedure proposed herein, a relatively straightforward definition of a state
space and derivation of transition probabilities based on experimental data is demonstrated. The
following example displays how test data can be used to help specify the state space for a process.
Figure 1 depicts the results of a series of 10 dynamic uniaxial strain tests for undisturbed specimens
of CARES-Dry sand [7]. Differences in response can primarily be attributed to (small) differences
in dry density. It is noted that the stress-strain curves are geometrically similar, but spatially
translated along the strain axis.

A possible state space could be obtained by the superposition of a square/rectangular grid on
the above figure of experimental data. This approach is described below.

Estimation of Transition Probabilities From Data

The main thrust of this section is now developed; that is, given experimental data about a certain
class of soil behavior, what approach can be used to derive a transition probability matrix that is
a reasonable measure of the evolutionary properties of this soil media class?

Consider the generic, parametric zy curves of Figure 2. It is useful to be able to derive the
transition probability matrix for the process which results in this behavior, primarily in the theory
that such behavior is in some useful sense representative of near-media behavior. The frequency
interpretation of probability will be used here. This approach assumes that, given multiple re-
alizations of a process (as one would have due to a sequence of experiments), as the number of
realizations becomes large, the ratio of the number of a specific realization to the total number of
realizations is a reasonable measure of the probability of the specific occurrence. This approach
assumes also that each realization is equally probable, although one could appropriately weigh more
likely outcomes.

Thus, if one is interested in estimating the, here time-invariant, transition probability between
state i to state j, rii, one could use the relation

Fi j
= -call i
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where the denominator represents all transitions from i, including i - j, and those that are
absorbed within i. Using this procedure, for the generic experimental data of Figure 2, the following
transition probability matrix H can be derived using a graphical procedure:

0 11 12 13 14 22 23 24 32 33 34 43 44
0 3/3
11 2/3 1/3
12 1/2 1/2
13 2/3 1/3
14 1/2 1/2
22 1/2 1/2

H = 23 1/3 1/3 1/3
24 2/3 1/3
32 1/1
33 1/3 1/3 1/3
34 2/3 1/3
43 1/1
44 1/1

where the left column label represents the initiating state ("from"), and the top row label represents
the receiving state ("to"). It is assumed that from the initial condition 0, all transitions are to 11.
Thus, the -entry under column 11.

As an example of the calculations, consider the transitions from state (2,2): there are 2 paths
in (2,2), one goes to (3,2), the other to (2,3); thus, each is assigned a probability of 1

An implicit assumption that is made above is that the time increments between transitions
are of such a duration that transitions will only occur between adjacent (bordering) states. This
requirement can always be satisfied by appropriately refining the state space. In general, each state
may lead to a transition to any of 8 states for the uniform state space grid of Figure 2.

The matrices considered here are sparse. For most experimental data, this will be the case.
Note the banded nature of the non-zero elements. This is also a result of the manner in which the
state space is numbered. It is emphasized that

1. the derivation of the above transition matrix does not take into account whether the individual
curves are in a "loading" or "unloading" phase; this distinction will be important for some
applications, and is discussed in the next section, and

2. while the transition probability matrix is homogeneous, an implicit time-scale exists due to
the assumption that during one time increment only the adjacent states may be entered.

Model Refinement for More Complicated Behavior

Here, it is of interest to model behavior such as the reversal of trends witnessed in stress-strain
behavior of materials subjected to loading and unloading cycles. The procedure of the previous
section is modified by augmenting the state space such that "loading" behavior is distinguished
from "unloading" behavior. Thus, for example, in Figure 2 state (3,3) is in actuality 2 states:
(3, 31) and (3, 3u), where the suffix I denotes loading, and u denotes unloading.

With this approach, one can partition the transition probability matrix into 4 sub-matrices
for the problem at hand:

I u
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where A represents an evolution from loading to continued loading, B represents an evolution from
loading to unloading, C represents an evolution from unloading to loading, and D represents an
evolution from unloading to continued unloading.

For the generic curves of Figure 2, matrix II is 18 rows by 18 columns, and the sub-matrices
are as follows:

0 11 12 131 22 231 241 32 331 341
0 3/3
11 2/3 1/3
12 1/2 1/2
131 1/1
22 1/2 1/2

A = 231 1/2 1/2
241 1/1
32 1/1
331 1/2
341

13u 14u 23u 24u 33u 34u 43u 44u
0
11
12
131
22

B = 231
241
32
331 1/2
341 1/1

13u 14u 23u 24u 33u 34u 43u 44u

13u 2/2
14u 1/2 1/2
23u 1/1

D 24u 2/2
33u 1/1
34u 2/2
43u 1/1
44u 1/1

and C = 0 in this instance, where it is noted that these sub-matrices are sub-stochastic, that is,
their row sums are < 1. Of course, the row sums of transition matrix IH are equal to 1; II is a
stochastic matrix. In the above, all rows/columns exclusively composed of O's, except for the "0"
column, have been removed.

It is emphasized that the above transition probability matrix is only representative of the
"data curves" of Figure 2, and is a product of the state space assumed in that figure. This means
that one will be able to reproduce these curves, using the derived transition probability matrix, by
applying the theory as outlined in the previous section. Thus, one would obtain the following state
probabilities at each increment in the model:
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p(O)= [1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 01
p(1)= [0 10 0 0 0 0 0 0 0 0 00 0 0 0 0 0 )
p(2)= [0 0 0.6 7 0.3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p(3)= [0 0 0 0.33 0.33 0.17 0 0.17 0 0 0 0 0 0 0 0 0 01
p(4)= [0 0 0 0 0 0.50 0.08 0.17 0.25 0 0 0 0 0 0 0 0 0]

p(l)= [0 0 0 0 0 0 0 0 0 0 0.72 0.28 0 0 0 0 0 01

p(16)= [0 0 0 0 0 0 0 0 0 0 0.99 0.01 0 0 0 0 0 0]

Such state information would be useful in a comprehensive computational tool where the
evolutionary behavior of soil samples is required. It is conceivable that tables of such information
can be developed for different samples under different environmental conditions. As such, a look-up
procedure can be established in the main program.

The hope, and this is the subject of further work, is that the given data is also representative of
process behavior in some "near field", the definition of which will be dependent on the correlation
structure of the media. To assess this property, it will be necessary to obtain similar data for field
points near the original point, and to establish procedures for estimating such correlations. Given
the results of the present work, and of the necessary extensions, it is believed that a framework
for modeling the evolutionary behavior of a media such as soil is possible using this phenomeno-
logical point of view. In a general formulation, each state may be decomposed into "loading" and
"unloading" states, or whatever behavior class is most appropriate.

This approach to estimating the transition probability matrix can be used in problems where
not much data is available, but one can draw on engineering judgment to set bounds on the behavior
and loading. In this instance, one may draw upper and lower bound a - E curves and "spread" the
probabilities evenly (or with some weighting) throughout the state space. Such a transition matrix
may provide a rough measure of the evolutionary soil behavior.

The state space definition, a rectangular grid above, is purely a construct of the analyst, and
cylindrical, spherical, or other geometries may be more useful for other types of problems. The
transition matrix may, of course, be used to represent a 3-dimensional problem. The key is always
an adequate data set, or other perhaps subjective information, for estimating probabilities.

Applying this graphical procedure to the experimental CARES-Dry sand data is straightfor-
ward, but, due to the 10 samples, one may superimpose a refined grid on the sample paths, which
are overlapping and "close". Transition probabilities for this application will be in multiples of -L.
The state space grid need not be uniform, and may be more refined in regions of critical behavior.
Again, the transition matrix will be banded and sparse. If these sample paths are characteristic of
the underlying soil media, then the derived transition probability matrix will be representative of
the soil behavior.

For behavior which is more complicated than that presented above, such as cyclical, hysteretic
behavior of soils, one may extend the state space definition such that each complete loading-
unloading cycle is represented by a state-space in two dimensions, and each subsequent loading-
unloading cycle extends the state space in the third dimension. Thus, a three dimensional grid will
be representative of soil undergoing many cycle hysteresis. In such a manner, so-called "memory-
dependent" behavior can be accounted for in the model. The key to the success of such an approach
is the availability of sufficient data. But then, this is the key to any model purporting to be
representative of some aspect of the physical world.
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In soil dynamics application, the analyst would use the Markov chain state transition model to
estimate the "location" of the soil in its state space. This information, i.e., p(0),... ,p(16) above,
would be fed back to the dynamics computer code whenever such information is needed to update
the system dynamics. Some thought would be needed as to whether the most probable state is
used, or some average of possible states be used, to define the evolution of the soil in its state
space. Use of a particular transition matrix presupposes that a similar soil, and loading, exist
for the problem at hand. It is intended that the transition matrix derivation be automated; given
experiment-generated data points, an algorithm can be used to generate the transition probabilities
for specific problems in real time.

CONCLUDING REMARKS & SUGGESTIONS for ADDITIONAL WORK

We have learned much during the course of our work here. Certain aspects of our work, had we
been able to retrace our steps, would have received less emphasis, and other aspe-te more emphasis.
But, of course, that is a decision that can only be made a fortiori. Where we have made progress: a
generic framework for modeling complex media such as soils is identified and explored; an approach
to extract probabilistic information from experimental data is proposed and demonstrated using
what we believe is the most comprehensive soil data available. Where it would have been interesting
to have reached a more advanced stage: more progress would have been desirable in translating
the mathematical understanding of Markov transition matrices into a physical understanding of
the constitutive/dynamic behavior of the soil.

A continuation of this work would require the following components. The first is the exten-
sion of some of the theoretical lines drawn in categorizing stochastic matrices, their convergence
properties, and the linking of matrix classes with dynamic behavior. In addition, the derivation of
transition matrices which represent more complicated behavior, such as hysteresis, would demon-
strate the validity of the graphical methodology presented in general. As part of this, testing the
robustness of this methodology would be an enlightening activity. Automating the procedure so
that transition matrices can be generated as data is compiled in an experiment could prove very
useful in linking mathematical model to data.

One issue of prime concern, and one which becomes paramount to those who must work with
complicated media such as soil, is the question of the modeling/predictive limits of analytical
methods. That is, as good as our mathematical models and experimental techniques become, there
is an inherent uncertainty in the medium that is of such significance that the results of any analysis,
while rigorous, may not provide information which will be useful in a practical (predictive) sense
(except perhaps over extremely short time durations).

The problem alluded to above is a function of the "scales" of the physical problem under
study. For example, a site of 1,000 cubic feet may be reasonably modeled, given general information
regarding the site environment, and some minimal tests within that 10 foot cube. This is because
any discontinuities will have a reasonable chance of being identified, and that other "continuous
changes" will not likely be significant due to the size of the length scale, that is, the length scale is
small relative to any discontinuities.

If one now considers a cube with sides of length 1,000 foot (lx109 cubic feet), a different
class of problem arises. This is because discontinuities can be completely contained within the
volume, and may be missed by tests. The significance of the site environment is less important.
In addition, continuous changes in properties now will work over a larger length scale. If one adds
the fact that all variations in the medium have random components that are easily on the order of
the mean value, then it can be concluded that any known model of the medium will not likely be
representative of even adjacent sites.
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This problem of "scales" of physical behavior is encountered in other disciplines, such as
turbulence in oceanic and atmospheric processes, where parameter variations over the scales of
the prc' ',m are significant, and therefore, predictions are limited. in fact, small scale turbulence
results in large scale response. Similar difficulties exist for the problem at hand.

How does one transcend this problem? These concluding comments will not be a source for
such resolution, rather, a few brief observations. Is the answer with microstructural modeling?
We are not qualified to address this technical approach. However, if a model is microstructural
instead of phenomenological, then the above problem of scales will tend to become more intricate.
For, even if at a microscale an accurate mathematical model is derived, this model must be able
to predict gross behavior at the larger scales of interest in application. To do this, the generalized
forces and pressures that a microstructural model predicts at microscale must "accumulate" in some
sense to the physical forces and pressures measurable in the laboratory and field. To do this, the
microstructural model must be valid at many orders of magnitude of behavior, from the microscopic
to the aggregate. Otherwise, the microstructural model will be only a formal expression.

Considering the difficulties of models which attempt predictions at much smaller behavior
ranges and scales, it will be interesting to discover how microstructural models are approaching the
difficulties briefly discussed above.
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Appendix. FRACTAL MODELING OF SOIL MEDIA

The basic purpose of this section is to investigate whether soil microstructure characteristics can be
modeled by fractal sets. The purely geometrical part of this work involves the setting up of a model
that simulates the soil structure in appearance. It is necessary, however, to go beyond this and to
devise a model that will not merely resemble the soil in appearance but also in mechanical behavior.
By this is meant the deformation under loading, including the failure mechanism phenomenon.

In the following, a procedure is summarized for calculating the deformation under loading of
a fractal set model. While the treatment is necessarily brief, there is sufficient detail devoted to
particular simple examples to demonstrate the feasibility of a program that has the potential of
initiating a subject that can become as voluminous as continuum mechanics.

It is the usual practice in studying the deformation of structural materials to model these
materials as continua. By a continuum we mean a material whose mass and elastic (or inelastic)
parameters vary continuously through the medium. In short, no voids of discontinuities are permit-
ted in such a model, except a manageably small finite number of these. This permits the powerful
methods of calculus to be employed, resulting in a system of differential equations, the solution of
which lead7 to a complete description of the deformation of the material under an arbitrary loading.

Microscopic examination shows that no material can be described as a continuum. Thus, a
continuum model, if it works at all, works when the deformations vary continuously when averaged
over sufficiently large volumes. This can lead to some inadequacy in dealing with important inelastic
phenomena, such as failure. It might be said then that continuum models are in their predominance
today due to mathematical convenience rather than to physical observation.

Lately the fractal set has gained attention in that many structures that are found in nature
are more readily modeled as fractal sets rather than continua. In this work, we intend to show how
such a fractal set model can lead to a theory of deformation which parallels that of a continuum
material model.

We will forgo generality and confine ourselves to the simplest possible example that displays
the basic ideas. This will enable us to avoid the formidable technicalities which surround the theory
of fractals. Thus, only an intuitive notion of a fractal set will suffice to understand our approach.

We now give a complete solution to one of the simplest problems imaginable: the fractal analog
of the one-dimensional stress-strain test. Imagine a layered medium, which is composed of rigid
layers interspersed with elastic layers. To convert the problem into one of fractal mechanics, we
assume the medium is of unit depth and that the rigid layers occupy precisely the locations of the
middle-third intervals.

To make this fractal model more plausible, one may consider it as the limit of a succession of
mass-spring models. This is shown in Figure 3, where the first two stages are shown. In the first
stage, shown in Figure 3a, the total mass m is concentrated in a single block of length 1/3, while
two springs k of equal length make up the rest of the model. Upon further resolution shown in
Figure 3b, the springs further resolve into 4 springs of length 1/32, and so on. In the limit, the
springs will occupy no length at all! In contrast, consider the equivalent continuum model, which is
conceived as being the limit of mass-spring models, as shown in Figure 4. In the limit the springs
occupy the total length of the model, while the masses occupy zero length. Viewed in this manner,
the fractal model is no more bizarre than the continuum model.
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The equations for the continuum approximation illustrated in Figure 4b are given as follows:

-ii, + k(2u, -- u2 ) = F
in..
-U2 + k(-ul + 2u 2 + u3 ) = F2

3
-u! 3 + k(-u 2 + 2u 3 ) = F3 + kA (1)
3

Let us consider the static case with F, = F2 = F3= 0. Then the system becomes:

2u -U2 0

-ul + 2U2 + U3 =0

-U2 + 2u 3 =A (2)

for which the solution is given by ul = 7,u2 = A,U 3 = 2A. If we rewrite this solution as
Uk = kA/2 2 for k = 1,2,3, then it will be apparent that at the nth stage, when thero are 2" - 1
masses, the solution will be given by Uk = kA/2 n for k = 1,2,...,(2" - 1). Since the masses are
equidistant, tne solution approaches the linear function u(z) = kA.

When the same approach is applied to the fractal approximations given in Figure 3b, we
obtain exactly the same equations given in (2); (note, however that the masses in the dynamic
version of (1) would be slightly different). Thus, the solution would be exactly the same. But the
interpretation of Uk is quite different; in the limit the solution is given by u(z) = f(x)A, where f
is known as the Devil's Staircase function [17].

As a matter of fact, had we known nothing of the Devil's Staircase, we could have used this
example to define it. Pushing this line of thought further, we can define other fractal functions.
Refer again to the continuum model in Figure 4. Now let A = 0 and all F = F. This case models
a rod acted upon by its own weight. Proceeding as before, but omitting details, when n - oo, we
find the expected solution, that u(x) is proportional to the quadratic function z(1 - x). If we follow
the same procedure in the case of the fractal model shown in Figure 3, we will obtain a fractal
function which is the analog of the quadratic function. In like manner other fractal functions can
be defined.

The first thing to note about the examples above is that both the continuum and fractal models
can be approximated by systems having a finite number of degrees of freedom, and when they are
so approximated, the resulting equations are identical. It is in the interpretation of the solution of
these equations that the difference lies.

Consider the expression, ui- 1 - 2ui + ui+l. For the continuum model, this expression becomes
proportional to the second derivative of u at some point on the model, as the degree of approxi-
mation goes to infinity. This is so because ui represents the motion at a point, and the relevant
points are equidistant.

But in the fractal model, ui represents the deflection of an entire interval, and no such inter-
pretation can be ascribed to ui-I - 2ui + ui+,. Indeed, the limit function u is not differentiable,
and it is meaningless to speak of a fractal model being governed by a differential equation.

The second thing to note is that for the fractal model solution, the deformation function u(x)
is given by a fractal function, i.e., a function that varies only on a fractal set. These functions may
appear strange at first, in that they are nondifferentiable; nevertheless, they are quite amenable
when they lie under an integral sign.

This means that the finite element method may be used in conjunction with a fractal model
much the same way as with continuum models. One need only recall how the finite element method
works. Over some simple geometric element, say a triangle or tetrahedron, a restricted class of
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deformations is allowed. This class of deformations will consist of polynomials, the coefficients
of which are linear functions of the deformations of the vettices of the elements. For a fractal
model, one simply replaces the polynomials by suitable fractal functions. In other words, the finite
element method can be employed for fractal models in much the same way as for continuum models;
polynomial functions are replaced by fractal functions.

The method presented above is very general. It remains to elaborate these in two and three
dimensions. This will involve the determination of fractal functions and their integration over
various finite elements. Comparisons with continuum models will be useful. These ideas can, in
principle, be generalized to more complex problems.
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APPENDIX. THE MARKOV METHOD [23]

In classical physics, a basic role is played by the fundamental principle of scientific determinism:
from the state of a physical system at the time to, one may deduce its state at a later instant t. As
a consequence of this principle one obtains a basic method of analyzing physical systems: the state
of a physical system at a given time t2 may be deduced from a knowledge of its state at an earlier
time tj and does not depend on the history of the system before time t1 . An example, differential
equations.

For physical systems which obey probabilistic laws rather than deterministic laws, one may
enunciate an analogous principle: the probability that the physical system will be in a given state
at a given time t2 may be deduced from a knowledge of its state at any earlier time t1 , and does
not depend on the history of the system before time t1 . Stochastic processes which represent
observations on physical systems satisfying this condition are called Markov processes.

A special kind of Markov process is a Markov chain; it may be defined as a stochastic process
with an evolution which may be treated as a series of transitions between the states of the system.
These states have the property that the probability law of the future evolution of the process, once
it is in a given state, depepds only on this state and not on how the process arrived at this state.
The number of possible states is either finite or countably infinite.

A discrete parameter (time in this case) stochastic process {X(t), t = 0, 1,2, ...} or a continuous
parameter stochastic process {X(t), t > 0} is said to be a Markov process if, for any set of n time
points, tl < t2,..., t,, the conditional distribution of X(tn), for given values of X(t1 ),. .. , X(t, - 1),
depends only on X(tn-), the most recent known value; in mathematical notation, for any real
numbers z,..., Xn, representing possible states of the system,

P[X(tn) < XnIX(ti) = X,. .. ,X(t, - 1 ) = Xn-1] = P[X(t,) _ xnIX(t,- 1) = Xn-1

This equation may be read to mean that, given the "present" of the process, the "future" is
independent of its "past."

Markov processes are classified according to (i) the nature of the index set of the process
(discrete or continuous time), and (ii) the nature of the state space of the process (discrete or
continuous state).

A real number x is said to be a possible value, or state, of a stochastic process X(t) if there
exists a time t such that the probability P[x - h < X(t) < x + h] is positive for every h > 0. The set
of possible values of a stochastic process is called its state space. The state space is called discrete
if it contains a finite or countably infinite number of states. A state space which is not discrete is
called continuous. A Markov process with discrete state space is called a Markov chain. Integers
{0, 1, ...} are used to represent the state space of such a chain.

A Markov process is described by a transition probability function, often denoted by
P(x,to;E,t) or P(E, tlx,to), which represents the conditional probability that the state of the
syotem will at time t belong to the set E, given that at time to < t the system is in state z. The
Markov process is said to have stationary transition probabilities, or to be homogeneous in
time, if P(x, to; E, t) depends on t and to only through the difference (t - to). We initially consider
homogeneous in time models.

The theory of Markov chains is initially presented with the assumption that the transition
probabilities and matrices are known. This, of course, is never the case; the estimation of these
transition probabilities is usually the most difficult and elusive part of the analysis.
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In order to specify the probability law of a discrete parameter Markov chain {X,} it suffices

to state for all times n > m > 0, and states j and k, the probability mass function

p,(n) = P[Xn = j]

and the conditional probability mass function

pj,k(m, n) = P[Xn = kIX, = j].

The function pj,k(m, n) is called the transition probability function of the Markov chain. The
probability law of a Markov chain is determined by pi(n) and Pjk(m, n) since for all integers q,
and any q time points ni < n2 < ... < nq, and states kl,...,k,

P[Xnl = k1,... ,Xn, = kq] = Pk,(nl)Pk,,k 2(nl,n2) .P,kq-1),kq(nq-1, nq).

A Markov chain is said to be homogeneous (or to be homogeneous in time or to have sta-
tionary transition probabilities) if pj,k(m, n) depends only on the difference n - m. We then call

pjk(n) = P[Xn+t = kjXt = j] for any integer t > 0

the n-step transition probability function of the homogeneous Markov chain {Xn}. In words,
Pj,k(n) is the conditional probability that a homogeneous Markov chain now in state j will move
after n (time) steps to state k. The one-step transition probabilities P,,k(l) are usually written
simply pj,k, i.e.,

pj,k = P[Xt+l = ktXt = j] for any integer t > 0.

Similarly, if {X(t), t > O} is a continuous parameter Markov chain, then to specify the probability
law of {X(t), t > 0}, it suffices to state for all times t > s > 0, and states j and k, the probability
mass function

p(t) = P[X(t) = k]

and the conditional probability mass function

pj,k(s, t) = P[X(t) = kIX(s) = j].

The function pj,k(s, t) is called the transition probability function of the Markov chain. The
Markov chain is said to be homogeneous (or to have stationary transition probabilities) if pj,k(s, t)
depends only on the difference t - s. We then call

pi,A,(t) = P[X(t + u) = kIX(u) = j] for any u > 0

the n-step transition probability function of the Markov chain X(t), t > 0.
A fundamental relation satisfied by the transition probability function of a Markov chain {X,}

is the so-called Chapman-Kolmogorov equation: for any times n > u > m > 0 and states j
and k,

pj,k(m, n) = j pj,i(m, u)pi,k(u, n),

summing over all states i of the Markov chain. This equation represents all possible intermediate
states i between j and k.
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The transition probabilities of a Markov chain {X,} with state space {0, 1,2,...} are best
exhibited in the form of a matrix:

rPOO(m,n) poj(m,n) ... pOk(mn) ..

pi,o(m,n) piji(m,n) .. Pl,k(M, n)
P(m, n) =

... pJ,K (m,n)

Note that the elements of a transition probability matrix P(m, n) satisfy the conditions

pj,k(m, n) 0 for all j, k

Spjk(m, n) = 1 for all j.
k

The Chapman-Kolmogorov equations for all times n > u > m >_ 0 may be written:

P(m,n) =- P(m, u)P(un).

From the Chapman-Kolmogorov equation, one may derive the recursive relation:

p(n) = p(O)P(O, n),

where

p(n) = [po(n) pi(n)...pj(n)...],

pj(n) = P[X, j].

It follows that the probability law of a Markov chain {X,} is completely determined once one
knows the transition probability matrices, and the unconditional probability vector p(O) at time 0.
In the case of a homogeneous Markov chain {Xn}, let

P(n) = {pi,k(n)}, P = {Pj,k}

denote respectively the n-step and the one-step transition probability matrices. From the above
equations, it is observed that

P(n) = P'

p(n) = P(O)Pn.

Consequently, the probability law of a homogeneous Markov chain is completely determined once
one knows the one-step transition probability matrix P = {pi,,}, and the unconditional probability
vector p(O) = {pj(0)} at time 0.

A Markov chain is said to be a finite Markov chain with K states if the number of possible
values of the random variables {X,} is finite and equal to K. The transition probabilities pj,k are
then non-zero for only a finite number of values of j and k, and the transition probability matrix
P is then a KxK matrix.

A state k is said to be accessible from a state j if, for some integer N > 1, pj,k(N) > 0. Two
states j and k are said to communicate if j is accessible from k, and k is accessible from j.

A state k is said to be recurrent if the probability is I that the Markov chain will eventually

return to k, having started at k. A state k is said to be non-recurrent if the above probability
is less than 1.

A state k is called an absorbing state if Pk,k = 1, so that once the chain visits k it remains

there forever. An absorbing state is clearly recurrent.
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APPENDIX. FIGURES

48
Td' 0/CC

I ROC-DUX-L2 1.81g
2 RDC-D4JX-112 V.8Beg
3 ROC-D4JX-13 1.818
4 RDC-D&JX-IS 1.81S

388 9 ROC-OUX-18 1.772
*8 RDC-DUJX-17 1.8120

7 RDC-DUX-18 1.tS10
S.RDC-DUX-19 1.889
0. RDC-CKJX-28 1.888

V)18 RC)C-D(JX-23 1.812 N

8 s to is 28

AXIAL STRAIN, %

DYN~AMIC UX; camax > 200 MPa

Figure 1. WES Data [71

31



4

I
3

24

0 23 4 Ex

Figure 2. Generic Curves on Square Grid State Space

32



/3 m13 m13

FF F
M 2 3

F FI
k ki

U 2 U3

(a) (b)

Figure 3. Fractal Model
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Figure 4. Continuum Model
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